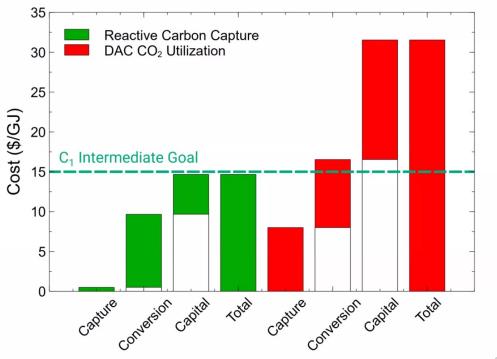
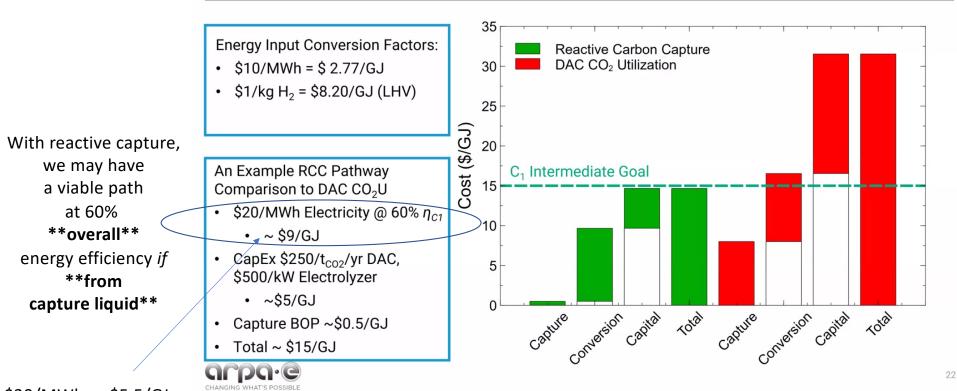
Picking up from where Ian Robinson left off...

Reactive Carbon Capture Could Produce a Viable Intermediate


Energy Input Conversion Factors:

- \$10/MWh = \$2.77/GJ
- $$1/kg H_2 = $8.20/GJ (LHV)$

An Example RCC Pathway Comparison to DAC CO₂U


- \$20/MWh Electricity @ 60% η_{C1}
 - ~ \$9/GJ
- CapEx \$250/t_{CO2}/yr DAC, \$500/kW Electrolyzer
 - ~\$5/GJ
- Capture BOP ~\$0.5/GJ
- Total ~ \$15/GJ

Picking up from where Ian Robinson left off...

Reactive Carbon Capture Could Produce a Viable Intermediate

\$20/MWhr = \$5.5/GJ

At Energy Efficiency 0.6, this is \$5.5/0.6=\$9/GJ product value

What did the **boldface** mean?

```
With reactive capture,
we may have
a viable path
at 60%
**overall**
energy efficiency if
**from
capture liquid**
```

Include in the energy cost:

- Electrolysis energy
- Separation of desired product from all other components (including any CO2)
 - And including any crossover (and resultant anodic stream separation) effects

(Don't include cost of contacting CO2 with capture liquid/sorbent ... Ian detailed that separately already...)

What did the **boldface** mean?

With reactive capture,
we may have
a viable path
at 60%
overall
energy efficiency if
**from
Captured state**

Include in the energy cost:

- Electrolysis energy
- Separation of desired product from all other components (including any CO2)
 - And including any crossover (and resultant anodic stream separation) effects

(Don't include cost of contacting CO2 with capture liquid/sorbent ... Ian detailed that separately already...)

- In reactive capture, we don't separate out a releasefrom-capture cost vs. an electroreduction cost – it's a single cost for electro-release-upgrade
- IF we can keep the CO2 <u>captured</u>, and if the desired product is <u>released</u> we can reduce separation costs

Another way to get to the Robinsonian Numbers:

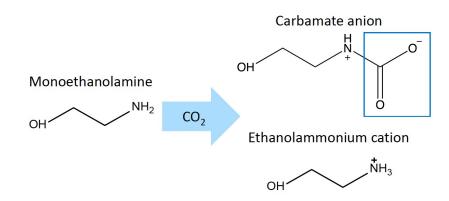
C1 such as CO at $$9/GJ_{productvalue}$ for energy, hence $$15/GJ_{productvalue}$ all in, corresponds to $$15/GJ_{productvalue}$ *9.2GJ $GJ_{productvalue}$ /ton for CO = \$138/tonCO.

(In my talk I will rely on audience remembering these figures:

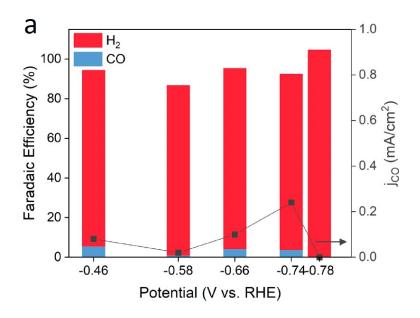
9.2 GJ/ton is the LHV of CO

So at lan's 60% overall energy efficiency, 15 GJ/tonCO of total energy is budgeted for CO production,

from captured state)

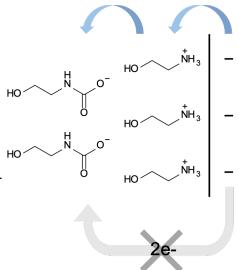

With this one can make methanol for ~ \$380/ton. A little pricey but right ballpark.

C2 such as C2H4 for \$18/GJ all in corresponds to \$18/GJ*48 GJ/ton = \$860/ton all in. A little pricey but right ballpark.

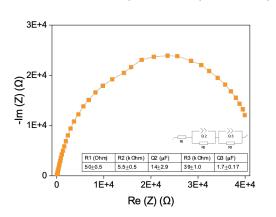

Direct E-upgrade of CO2 from Capture Absorbent

- 1. An early attempt at direct e-upgrade of captured CO₂ to CO
- 2. In this early attempt ... how far were we (at small scale) from \$15/GJ? (= 15 GJ/ton)
- 3. Where would we have to move the metrics to get to \$15/GJ? (= 15 GJ/ton), and how might we approach this?
- 4. Grand Problems and Questions

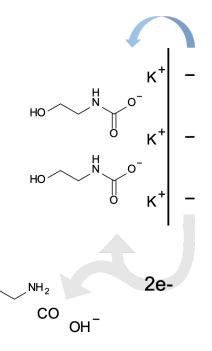
- We worked in monoethanolamine MEA solution which, upon absorption of the CO₂ molecules, turns into:
 - Carbamate anion
 - i.e. the amine-CO₂ adduct, i.e. the reactant
 - Ethanolammonium cations, the supporting electrolyte
- We used an Ag electrocatalyst as cathode
- We formed the catholyte by purging MEA with CO₂, after which we purged with N₂ to remove dissolved CO₂

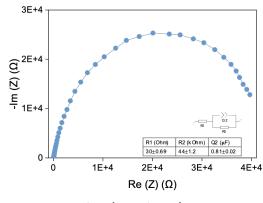


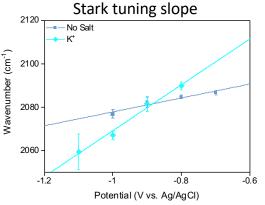
 Unfortunately, the faradaic efficiency to CO was below 5% at all potentials we studied



 We can account for this if the electron transfer between the electrode (electrocatalyst) and the carbamate molecule is inefficient

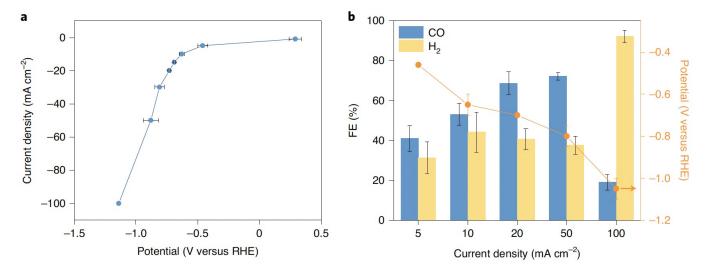

- We believe that the cationic ethanolammonium ion will occupy the inner Helmholtz layer, the result of the negativelybiased surface
- Thus (see blue arrow), to the extent that electron transfer occurs...
 - It must go first through the ethanolammonium for reaching the carbamate
 - EIS showed two distinct electron transfers


Electrochemical Impedance Spectroscopy



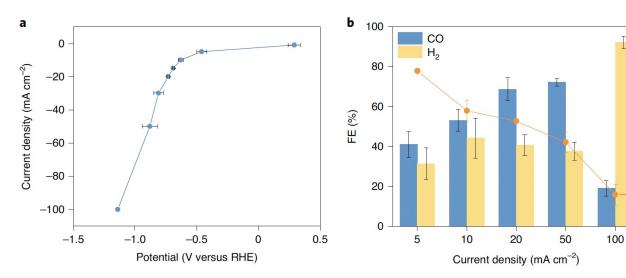
- We therefore tried to tune the electrochemical double layer (EDL) by introducing properlysized cations
 - Our goal was to disrupt the undesired charge-blocking layer
 - And to pursue direct electron transfer to carbamate
- The figure shows a cartoon of role of introducing alkali cations:
 - EIS now showed a single charge transfer process
 - Surface EDL capacitance shows a more compact double layer we note that the HO hydrated K⁺ in the EDL, replacing the ethanolammonium cation

Electrochemical Impedance Spectroscopy

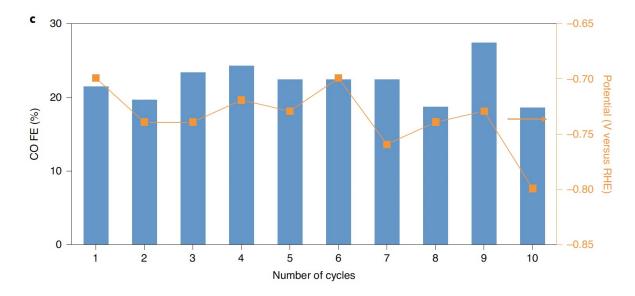


 Under these conditions, the direct electrochemical conversion of amine-CO₂ to CO becomes possible:

$$RNHCOO^- + 2H^+ + 2e^- \rightarrow RNH_2 + CO + OH^-$$


- We further tailored:
 - Explored libraries of alkali cations
 - Operated at 60°C
- And achieved:
 - 72% faradaic efficiency
 - 50 mA/cm²
 - At -0.8 V (vs. RHE)

Geonhui Lee, Yuguang C. Li, ... Edward Sargent, "Electrochemical upgrade of CO₂ from amine capture solution," Nature Energy, 2021.


- We further tailored:
 - Explored libraries of alkali cations
 - Operated at 60°C
- And achieved:
 - 72% faradaic efficiency
 - 50 mA/cm²
 - At -0.8 V (vs. RHE)

	Achieved
V _{cathode} (V)	-0.8
V _{anode} (V)	0.35
CO Faradaic efficiency (%)	72
Energy efficiency (%)	37
Total energy cost (GJ/ton CO)	24.6

Geonhui Lee, Yuguang C. Li, ... Edward Sargent, "Electrochemical upgrade of CO₂ from amine capture solution," Nature Energy, 2021.

- We performed cycling tests, studying the recyclability of the capture liquid:
 - First we ran amine-CO₂ electrolysis at constant current density, until the concentration of amine-CO₂ was depleted (10 hours)
 - Then, we repurged with CO₂, and initiated a new cycle of electrolysis

2. In this early attempt ... how far were we (at small scale) from \$15/GJ? (= 15 GJ/ton)

	Alkaline	Neutral	SOEC	Amine-CO ₂ reduction
System	Flow cell	MEA	SOEC	Flow cell
	Parameters			
CO ₂ utilization (%)	17	35	30	100
Carbonate formation (%)	45	0	0	0
Crossover (%)	2	30	0	0
Exit CO ₂ (%)	36	35	70	0
Energy cost (kJ/mole of CO)				
Cathode input	388	388	388	0
Electrolysis	592	640	452	690
Product separation	53	25	58	0
Anode separation	3	21	0	0
Carbonate regeneration	1026	0	0	0
Total energy	2058	1074	898	690
Energy cost (GJ/ton CO)				
Total energy	73.6	38.5	32.2	24.6

2. In this early attempt ... how far were we (at small scale) from \$15/GJ? (= 15 GJ/ton)

- Where does direct-amine CO₂, as achieved in the lab to date, get us?
 - By:
 - Delivering substantially pure CO as the product gas (without CO₂)
 - Avoiding crossover (i.e. avoiding the need to purify the anode stream)
 - Avoiding carbonate loss (or rather, electrically regenerating the capture liquid, rather than needing P/T/V swing)
 - ...we achieved 24.6GJ/tonne of CO
 - \$131/tonne of CO for opex

State-of-the-art				
	Alkaline	Neutral	SOEC	Amine-CO ₂ reduction
System	Flow cell	MEA	SOEC	Flow cell
Parameters				
CO ₂ utilization (%)	17	35	30	100
Carbonate formation (%)	45	0	0	0
Crossover (%)	2	30	0	0
Exit CO ₂ (%)	36	35	70	0
Energy cost (kJ/mole of CO)				
Cathode input	388	388	388	0
Electrolysis	592	640	452	690
Product separation	53	25	58	0
Anode separation	3	21	0	0
Carbonate regeneration	1026	0	0	0
Total energy	2058	1074	898	690
Energy cost (GJ/ton CO)				
Total energy	73.6	38.5	32.2	24.6

3. Where would we have to move the metrics to get to \$15/GJ? (= 15 GJ/ton), and how might we approach this?

What would it take to get from 24.6 GJ/ton to 15 GJ ton?

	Achieved	Target
V _{cathode} (V)	-0.8	-0.45
V _{anode} (V)	0.35	0.22
CO Faradaic efficiency (%)	72	92
Energy efficiency (%)	37	60
Total energy cost (GJ/ton CO)	24.6	15

- Major efforts to:

- Reduce voltage
- Increase FE to CO
- Increase current density

This is demanding!...
The CO₂:MEA adduct is bound to the tune of 35 kJ/mol

3. Where would we have to move the metrics to get to \$15/GJ? (= 15 GJ/ton), and how might we approach this?

Fuller requirements list for (say) a 3 year study

System	Capture-to-CO
EE	60%
Sii	multaneous with:
Current density	>300 mA/cm ² *
Operating time	>100 hours *
Demo	CO ₂ -loaded electrolyte
	formed using contactor to air
	*Ultimately need
	1-2 A/cm2 10 ⁵ hours

3. Where would we have to move the metrics to get to \$15/GJ? (= 15 GJ/ton), and how might we approach this?

Catalyst design: Custom for direct reduction of CO₂:X adducts to Leverage the catalyst-CO2 adducts interaction

Local environment engineering: Control local pH/electrochemical double layer to determine the selectivity

Temperature, Pressure: Tune the mass transport of CO₂ adducts by moderate temperature/elevated pressure

Advanced amines/mixtures: Many degrees of freedom not fully explored in electrochemistry, including the many tried in CO₂ capture

Ionic liquids: task-specific ionic liquids capturing CO2 are active for electrocatalytic conversion

Solid sorbents: Can we tether solid sorbents on a conductive support, and directly reduce from solid-sorbent:CO₂ adduct

4. Grand Problems and Questions

Some challenges:

- CO₂ adduct needs to interact strongly with electrocatalyst surface
 - Can we better tailor the electrochemical double layer?
- Overpotential to break bond energy in CO₂ adducts
 - The strength of binding limits how low can be the overpotential
 - 35 kJ/mole of CO₂ for MEA-CO₂ formation for e.g.
 - Can we further tune the binding, but still get capture with good kinetics?
- The concentration and the diffusivity of capture: CO₂ adduct will affect mass transport
 - Reactions occurs at mass transport limited region
- Electrocatalyst stability in the capture liquid

4. Grand Problems and Questions – Zoomed out further:

How does it work? What is the sequence of steps that lead to CO₂ being reduced from the molecule to which it is adsorbed? Is it reduced *in situ* while still bound in carbamate form?

How well could it work? What determines the limits of current density and overpotential combined? How the system works in coupling with a capture liquid from a capture unit? What is the concentration/impurities range of capture liquid for the direct and upgrade system?

What does it compete with? What are competing reactions, including ones that can emerge at higher applied potentials, and/or after extended reactions? Are the capture molecules at risk of being evaporated/reduced?